Mitochondrial DNA Mutations and Aging
References and Scientific Links:


Zhang C, Liu VW, Addessi CL, Sheffield DA, Linnane AW, et al. (1998) Differential occurrence of mutations in mitochondrial DNA of human skeletal muscle during aging. Hum Mutat 11: 360–371. Find this article online

Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–779. Find this article online

Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, et al. (2001) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci U S A 98: 4022–4027. Find this article online

Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, et al. (2003) Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci U S A 100: 1116–1121. Find this article online

Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet 11: 133–145. Find this article online

Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, et al. (2000) Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 69: 151–161. Find this article online

Melov S, Hinerfeld D, Esposito L, Wallace DC (1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 25: 974–982. Find this article online

Melov S, Schneider JA, Coskun PE, Bennett DA, Wallace DC (1999) Mitochondrial DNA rearrangements in aging human brain and in situ PCR of mtDNA. Neurobiol Aging 20: 565–571. Find this article online

Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23: 4122–4126. Find this article online

Nekhaeva E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, et al. (2002) Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci U S A 99: 5521–5526. Find this article online

Wang E, Wong A, Cortopassi G (1997) The rate of mitochondrial mutagenesis is faster in mice than humans. Mutat Res 377: 157–166. Find this article online

Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. Faseb J 15: 322–332. Find this article online

Cao Z, Wanagat J, McKiernan SH, Aiken JM (2001) Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 29: 4502–4508. Find this article online

Fayet G, Jansson M, Sternberg D, Moslemi AR, Blondy P, et al. (2002) Ageing muscle: Clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12: 484–493. Find this article online

Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, et al. (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38: 518–520. Find this article online

Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, et al. (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38: 515–517. Find this article online

Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, et al. (2001) Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22: 265–272. Find this article online

Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, et al. (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112: 1351–1360. Find this article online

Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, et al. (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci U S A 103: 714–719. Find this article online

Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68: 802–806. Find this article online

Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39: 359–407. Find this article online

Lee HR, Johnson KA (2006) Fidelity of the human mitochondrial DNA polymerase. J Biol Chem 281: 36236–36240. Find this article online

Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276: 38555–38562. Find this article online

Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, et al. (2006) Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 59: 859–862. Find this article online

Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, et al. (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: Clinical and molecular genetic study. Lancet 364: 875–882. Find this article online

Pepin B, Mikol J, Goldstein B, Aron JJ, Lebuisson DA (1980) Familial mitochondrial myopathy with cataract. J Neurol Sci 45: 191–203. Find this article online

Servidei S, Zeviani M, Manfredi G, Ricci E, Silvestri G, et al. (1991) Dominantly inherited mitochondrial myopathy with multiple deletions of mitochondrial DNA: Clinical, morphologic, and biochemical studies. Neurology 41: 1053–1059. Find this article online

Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, et al. (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339: 309–311. Find this article online

Mancuso M, Filosto M, Bellan M, Liguori R, Montagna P, et al. (2004) POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology 62: 316–318. Find this article online

Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28: 211–212. Find this article online

Graziewicz MA, Longley MJ, Bienstock RJ, Zeviani M, Copeland WC (2004) Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11: 770–776. Find this article online

Ponamarev MV, Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2002) Active site mutation in DNA polymerase gamma associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J Biol Chem 277: 15225–15228. Find this article online

Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, et al. (2004) Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 32: 3053–3064. Find this article online

Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, et al. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28: 223–231. Find this article online

Sharer JD (2005) The adenine nucleotide translocase type 1 (ANT1): A new factor in mitochondrial disease. IUBMB Life 57: 607–614. Find this article online

Van Goethem G, Lofgren A, Dermaut B, Ceuterick C, Martin JJ, et al. (2003) Digenic progressive external ophthalmoplegia in a sporadic patient: Recessive mutations in POLG and C10orf2/Twinkle. Hum Mutat 22: 175–176. Find this article online

Lonnqvist T, Paetau A, Nikali K, von Boguslawski K, Pihko H (1998) Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): Neuropathological features. J Neurol Sci 161: 57–65. Find this article online

Nikali K, Suomalainen A, Saharinen J, Kuokkanen M, Spelbrink JN, et al. (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 14: 2981–2990. Find this article online

Agostino A, Valletta L, Chinnery PF, Ferrari G, Carrara F, et al. (2003) Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurology 60: 1354–1356. Find this article online

Deschauer M, Hudson G, Muller T, Taylor RW, Chinnery PF, et al. (2005) A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 15: 311–315. Find this article online

Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, et al. (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289: 782–785. Find this article online

De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, et al. (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300: 2055. Find this article online

Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423: 293–298. Find this article online

Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, et al. (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101: 8963–8968. Find this article online

Chen L, Huang S, Lee L, Davalos A, Schiestl RH, et al. (2003) WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2: 191–199. Find this article online

Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, et al. (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17: 100–103. Find this article online

Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484. Find this article online

Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423. Find this article online

Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, et al. (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 429: 357–359. Find this article online

Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, et al. (2006) Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 11: 577–593. Find this article online

Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, et al. (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57: 147–157. Find this article online

Mott JL, Zhang D, Stevens M, Chang S, Denniger G, et al. (2001) Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations. Mutat Res 474: 35–45. Find this article online

Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P, et al. (2005) Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 288: H2476–H2483. Find this article online

Mott JL, Zhang D, Freeman JC, Mikolajczak P, Chang SW, et al. (2004) Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochem Biophys Res Commun 319: 1210–1215. Find this article online

Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47: 1–7. Find this article online

Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: Evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10: 900–919. Find this article online

Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2: 180–190. Find this article online

Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231–236. Find this article online

Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, et al. (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13: 935–944. Find this article online

Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N, et al. (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 13: 3219–3227. Find this article online

Matsushima Y, Garesse R, Kaguni LS (2004) Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in schneider cells. J Biol Chem 279: 26900–26905. Find this article online

Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, et al. (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11: 807–815. Find this article online

Maier D, Farr CL, Poeck B, Alahari A, Vogel M, et al. (2001) Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell 12: 821–830. Find this article online

Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, et al. (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21: 133–137. Find this article online

Li H, Wang J, Wilhelmsson H, Hansson A, Thoren P, et al. (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci U S A 97: 3467–3472. Find this article online

Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, et al. (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26: 336–340. Find this article online

Sorensen L, Ekstrand M, Silva JP, Lindqvist E, Xu B, et al. (2001) Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 21: 8082–8090. Find this article online

Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, et al. (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 102: 17687–17692. Find this article online

Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, et al. (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16: 226–234. Find this article online

Levy SE, Chen YS, Graham BH, Wallace DC (2000) Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene 254: 57–66. Find this article online

Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96: 4820–4825. Find this article online

Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, et al. (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26: 176–181. Find this article online

Poulton J, Deadman ME, Ramacharan S, Gardiner RM (1991) Germ-line deletions of mtDNA in mitochondrial myopathy. Am J Hum Genet 48: 649–653. Find this article online
Nakada K, Inoue K, Hayashi JI (2001) Mito-mice: Animal models for mitochondrial DNA-based diseases. Semin Cell Dev Biol 12: 459–465. Find this article online

Inoue S, Ishikawa K, Nakada K, Sato A, Miyoshi H, et al. (2006) Suppression of disease phenotypes of adult mito-mice carrying pathogenic mtDNA by bone marrow transplantation. Hum Mol Genet 15: 1801–1807. Find this article online

Nakada K, Sato A, Sone H, Kasahara A, Ikeda K, et al. (2004) Accumulation of pathogenic DeltamtDNA induced deafness but not diabetic phenotypes in mito-mice. Biochem Biophys Res Commun 323: 175–184. Find this article online

Kasahara A, Ishikawa K, Yamaoka M, Ito M, Watanabe N, et al. (2006) Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum Mol Genet 15: 871–881. Find this article online

Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, et al. (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97: 14461–14466. Find this article online

Fan L, Kim S, Farr CL, Schaefer KT, Randolph KM, et al. (2006) A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. J Mol Biol 358: 1229–1243. Find this article online

Pinz KG, Bogenhagen DF (2006) The influence of the DNA polymerase gamma accessory subunit on base excision repair by the catalytic subunit. DNA Repair (Amst) 5: 121–128. Find this article online

Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281: 374–382. Find this article online

Johnson AA, Johnson KA (2001) Exonuclease proofreading by human mitochondrial DNA polymerase. J Biol Chem 276: 38097–38107. Find this article online

Johnson AA, Johnson KA (2001) Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J Biol Chem 276: 38090–38096. Find this article online

Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC (2006) Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res 599: 11–20. Find this article online

Spelbrink JN, Toivonen JM, Hakkaart GA, Kurkela JM, Cooper HM, et al. (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 275: 24818–24828. Find this article online

Khrapko K, Coller HA, Andre PC, Li XC, Hanekamp JS, et al. (1997) Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci U S A 94: 13798–13803. Find this article online

Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, et al. (2005) DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci U S A 102: 4990–4995. Find this article online

Brown TA, Clayton DA (2006) Genesis and wanderings: origins and migrations in asymmetrically replicating mitochondrial DNA. Cell Cycle 5: 917–921. Find this article online

Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15: 957–966. Find this article online

DiMauro S, Hirano M (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15: 276–286. Find this article online

Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100: 515–524. Find this article online
Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 1757: 79–89. Find this article online

Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2006) Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging 27: 1129–1136. Find this article online

Maki H (2002) Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet 36: 279–303. Find this article online

de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, et al. (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Res 61: 5378–5381. Find this article online

Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA (2005) No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med 38: 737–745. Find this article online

Kang D, Nishida J, Iyama A, Nakabeppu Y, Furuichi M, et al. (1995) Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem 270: 14659–14665. Find this article online

Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, et al. (2006) MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 26: 1688–1698. Find this article online

Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, et al. (2005) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Diff 13: 551–563. Find this article online

Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, et al. (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 96: 13300–13305. Find this article online

Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, et al. (2003) Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res 63: 902–905. Find this article online

Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, et al. (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci U S A 98: 11456–11461. Find this article online

Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, et al. (1990) Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 18: 561–567. Find this article online

Srivastava S, Moraes CT (2005) Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 14: 893–902. Find this article online

Samuels DC, Schon EA, Chinnery PF (2004) Two direct repeats cause most human mtDNA deletions. Trends Genet 20: 393–398. Find this article online

Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AH, et al. (2002) Cells bearing mutations causing Leber's hereditary optic neuropathy are sensitized to Fas-Induced apoptosis. J Biol Chem 277: 5810–5815. Find this article online

Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305: 626–629. Find this article online

Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312. Find this article online

Andreeva L, Tanveer A, Crompton M (1995) Evidence for the involvement of a membrane-associated cyclosporin-A-binding protein in the Ca(2+)-activated inner membrane pore of heart mitochondria. Eur J Biochem 230: 1125–1132. Find this article online

Mott JL, Zhang D, Zassenhaus HP (2005) Mitochondrial DNA mutations, apoptosis, and the misfolded protein response. Rejuvenation Res 8: 216–226. Find this article online

Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279: 49064–49073. Find this article online

Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. Faseb J 14: 312–318. Find this article online

Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: A homeoviscous-longevity adaptation? Ann N Y Acad Sci 959: 475–490. Find this article online

Pamplona R, Portero-Otin M, Requena JR, Thorpe SR, Herrero A, et al. (1999) A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech Ageing Dev 106: 283–296. Find this article online

Barja G (2004) Free radicals and aging. Trends Neurosci 27: 595–600. Find this article online
Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. Faseb J 15: 1589–1591. Find this article online

Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, et al. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911. Find this article online

Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, et al. (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16: 29–37. Find this article online

Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, et al. (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36: 877–882. Find this article online
Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A 98: 2278–2283. Find this article online

Miller RA (2005) Evaluating evidence for aging. Science 310: 441–443. Author reply: 441-443. Find this article online

Gershon D (2005) Evaluating evidence for aging. Science 310: 441–443. Author reply: 441-443. Find this article online

Khrapko K, Kraytsberg Y, de Grey ADNJ, Vijg J, Schon EA (2006) Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5: 279–282. Find this article online

Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63. Find this article online

Cassano P, Lezza AMS, Leeuwenburgh C, Cantatore P, Gadaleta MN (2004) Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Ann N Y Acad Sci 1019: 269–273. Find this article online

Lopez-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32: 882–889. Find this article online

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, et al. (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. Faseb J 20: 1064–1073. Find this article online

Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, et al. (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103: 1768–1773. Find this article online

de la Asuncion JG, Millan A, Pla R, Bruseghini L, Esteras A, et al. (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. Faseb J 10: 333–338. Find this article online

Haripriya D, Sangeetha P, Kanchana A, Balu M, Panneerselvam C (2005) Modulation of age-associated oxidative DNA damage in rat brain cerebral cortex, striatum and hippocampus by L-carnitine. Exp Gerontol 40: 129–135. Find this article online

Hruszkewycz AM, Bergtold DS (1990) The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation. Mutat Res 244: 123–128. Find this article online

Sastre J, Millan A, Garcia de la Asuncion J, Pla R, Juan G, et al. (1998) A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med 24: 298–304. Find this article online

Berneburg M, Gremmel T, Kurten V, Schroeder P, Hertel I, et al. (2005) Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol 125: 213–220. Find this article online

Eicker J, Kurten V, Wild S, Riss G, Goralczyk R, et al. (2003) Betacarotene supplementation protects from photoaging-associated mitochondrial DNA mutation. Photochem Photobiol Sci 2: 655–659. Find this article online

Adachi K, Fujiura Y, Mayumi F, Nozuhara A, Sugiu Y, et al. (1993) A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 195: 945–951. Find this article online

Baruffini E, Lodi T, Dallabona C, Puglisi A, Zeviani M, et al. (2006) Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans. Hum Mol Genet 15: 2846–2855. Find this article online

Chinnery P, Majamaa K, Turnbull D, Thorburn D (2006) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 1: CD004426. Find this article online

Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, et al. (2002) Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 277: 44932–44937. Find this article online

Rachek LI, Grishko VI, Alexeyev MF, Pastukh VV, LeDoux SP, et al. (2004) Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Res 32: 3240–3247. Find this article online

Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, et al. (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem 278: 37965–37973. Find this article online

Mason PA, Matheson EC, Hall AG, Lightowlers RN (2003) Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res 31: 1052–1058. Find this article online
Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, et al. (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115: 629–640. Find this article online

Bannikova S, Zorov DB, Shoeman RL, Tolstonog GV, Traub P (2005) Stability and association with the cytomatrix of mitochondrial DNA in spontaneously immortalized mouse embryo fibroblasts containing or lacking the intermediate filament protein vimentin. DNA Cell Biol 24: 710–735. Find this article online

Mookerjee SA, Lyon HD, Sia EA (2005) Analysis of the functional domains of the mismatch repair homologue Msh1p and its role in mitochondrial genome maintenance. Curr Genet 47: 84–99. Find this article online

Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20: 145–147. Find this article online

Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28: 44–53. Find this article online

Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci U S A 98: 4038–4043. Find this article online

Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, et al. (2002) Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A 99: 15066–15071. Find this article online

Holt IJ, Harding AE, Morgan-Hughes JA (1989) Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms. Nucleic Acids Res 17: 4465–4469. Find this article online

Blok RB, Thorburn DR, Thompson GN, Dahl HH (1995) A topoisomerase II cleavage site is associated with a novel mitochondrial DNA deletion. Hum Genet 95: 75–81. Find this article online
Hakonen AH, Heiskanen S, Juvonen V, Lappalainen I, Luoma PT, et al. (2005) Mitochondrial DNA polymerase W748S mutation: A common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77: 430–441. Find this article online

Longley MJ, Graziewicz MA, Bienstock RJ, Copeland WC (2005) Consequences of mutations in human DNA polymerase gamma. Gene 354: 125–131. Find this article online

Santoro L, Manganelli F, Lanzillo R, Tessa A, Barbieri F, et al. (2006) A new POLG1 mutation with peo and severe axonal and demyelinating sensory-motor neuropathy. J Neurol 253: 869–874. Find this article online

Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, et al. (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 129: 1674–1684. Find this article online

Ferrari G, Lamantea E, Donati A, Filosto M, Briem E, et al. (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 128: 723–731. Find this article online

Kollberg G, Moslemi AR, Darin N, Nennesmo I, Bjarnadottir I, et al. (2006) POLG1 mutations associated with progressive encephalopathy in childhood. J Neuropathol Exp Neurol 65: 758–768. Find this article online

Gago MF, Rosas MJ, Guimaraes J, Ferreira M, Vilarinho L, et al. (2006) SANDO: Two novel mutations in POLG1 gene. Neuromuscul Disord 16: 507–509. Find this article online

Hudson G, Deschauer M, Taylor RW, Hanna MG, Fialho D, et al. (2006) POLG1, C10ORF2, and ANT1 mutations are uncommon in sporadic progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Neurology 66: 1439–1441. Find this article online

Naimi M, Bannwarth S, Procaccio V, Pouget J, Desnuelle C, et al. (2006) Molecular analysis of ANT1, TWINKLE and POLG in patients with multiple deletions or depletion of mitochondrial DNA by a dHPLC-based assay. Eur J Hum Genet 14: 917–922. Find this article online

Nguyen KV, Ostergaard E, Ravn SH, Balslev T, Danielsen ER, et al. (2005) POLG mutations in Alpers syndrome. Neurology 65: 1493–1495. Find this article online

Nguyen KV, Sharief FS, Chan SS, Copeland WC, Naviaux RK (2006) Molecular diagnosis of Alpers syndrome. J Hepatol 45: 108–116. Find this article online

Winterthun S, Ferrari G, He L, Taylor RW, Zeviani M, et al. (2005) Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 64: 1204–1208. Find this article online

Estabrook RW, Rainey WE (1996) Twinkle, twinkle little StAR, how we wonder what you are. Proc Natl Acad Sci U S A 93: 13552–13554. Find this article online

Hirano M, DiMauro S (2001) ANT1, Twinkle, POLG, and TP: New genes open our eyes to ophthalmoplegia. Neurology 57: 2163–2165. Find this article online

Hudson G, Deschauer M, Busse K, Zierz S, Chinnery PF (2005) Sensory ataxic neuropathy due to a novel C10Orf2 mutation with probable germline mosaicism. Neurology 64: 371–373. Find this article online

Kiechl S, Horvath R, Luoma P, Kiechl-Kohlendorfer U, Wallacher-Scholz B, et al. (2004) Two families with autosomal dominant progressive external ophthalmoplegia. J Neurol Neurosurg Psychiatry 75: 1125–1128. Find this article online

Lewis S, Hutchison W, Thyagarajan D, Dahl HH (2002) Clinical and molecular features of adPEO due to mutations in the Twinkle gene. J Neurol Sci 201: 39–44. Find this article online

Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: A repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110: 339–348.
Time Challenger Labs International, Inc.